Solid State-Based Additive Manufacturing (AM) Processes

1. Fused Deposition Modeling (FDM)

Process and Working Principle

- **FDM** is a material extrusion process where a **thermoplastic filament** is fed from a spool into a heated extrusion nozzle.
- The nozzle melts the filament and deposits it **layer by layer** onto a build platform following a prescribed path from CAD-generated G-code.
- The extruded material cools and solidifies, fusing with previous layers to form the 3D component.
- The print head moves in three axes (X, Y, Z) to build complex geometries.

Materials

- Typical thermoplastics: ABS, PLA, PETG, Nylon, TPU, PEI.
- Composite or enhanced filaments: carbon-fiber reinforced, graphene-doped PLA.
- Some metals and ceramics are also available in filament or wire forms for modified FDM equipment.

Equipment and Specifications

- Printer types vary from desk-scale to industrial machines.
- Layer thickness typically ranges from 50 to 300 microns.
- Build volume depends on machine size; high-end machines can print parts measuring over a meter in any dimension.
- Advantages: Cost-effective, widely accessible, versatile.
- Limitations: Lower resolution and surface finish relative to other processes, anisotropic mechanical properties, and limited material strength.

Applications

 Prototyping, tooling, functional parts for automotive, aerospace, medical, and consumer products.

2. Laminated Object Manufacturing (LOM)

Process and Working Principle

- LOM uses layers of adhesive-coated sheets (paper, plastic, or metal laminates).
- A sheet is fed, bonded by heat and pressure to the previous layer, and then a **computer-controlled laser or blade** cuts the cross-sectional shape for that layer.
- Excess material remains and acts as support but is removed after the build is complete.
- The build platform lowers after each layer, and the cycle repeats.

Equipment and Specifications

- Key components include sheet feeder, heated roller laminator, laser cutting system, and build platform.
- Materials often include adhesive-coated paper or polymer films; metal laminates are also used
- Layer thickness depends on material thickness, generally ~0.1 to 0.3 mm.

Applications

- Large-scale prototypes, architectural models, investment casting patterns.
- Parts with decent strength and low cost where fine details are not critical.

Advantages

- Fast build speeds for large parts.
- Low material cost.
- No need for support structures as layers provide inherent support.

Disadvantages

- Limited to sheet materials like paper or plastic.
- Lower dimensional accuracy and surface finish compared to other AM processes.
- Manual removal of waste material increases post-processing.
- Not suitable for complex internal geometries.

3. Other Solid-State AM Processes

Ultrasonic Consolidation (UC)

- Produces metal parts by ultrasonically welding thin metal foils in a layer-by-layer fashion without melting the material.
- Uses ultrasonic vibrations and pressure to bond overlapping metal sheets.

- CNC milling may be used intermittently for feature shaping.
- Benefits include joining dissimilar metals and embedding temperature-sensitive materials.

Gluing and Thermal Bonding

- Involve joining layers or sheets via adhesives or heat.
- Gluing: Uses chemical adhesives between layers.
- Thermal bonding: Uses heat to soften and fuse thermoplastic layers.
- Widely applied in laminate composites, multi-material structures, and packaging.

4. Demonstration of Equipment (Typical Features)

- **FDM Printers:** Spool holder, extruder assembly with heated nozzle, movable build platform, control electronics with touchscreen or PC interface.
- **LOM Machines:** Sheet feeding system, heated laminating roller, laser cutting unit, waste removal, build platform.
- **UC Machines:** Sonotrode for ultrasonic vibration, foil feeding mechanism, CNC milling integration.

Summary Table

Process	Principle	Materials	Advantages	Disadvantages	Applications
Fused Deposition Modeling	Melted thermoplastic extrusion	Thermoplastics & composites	Low cost, versatile, easy	Surface finish, anisotropy, resolution limits	Prototyping, tooling, functional parts
Laminated Object Manufacturing	Layered adhesive sheets + laser cutting	Paper, plastic, metal sheets	Large parts, fast, low cost	Limited materials, manual waste removal	Architectural models, casting patterns
Ultrasonic Consolidation	Ultrasonic metal foil welding (solid-state)	Metals	Low-temp bonding, dissimilar metals	Complex equipment, slower build speeds	Metal parts, embedding materials
Gluing and Thermal Bonding	Adhesive or heat fusion	Laminates, composites	Simple, multi- material joins	Joint strength depends on materials	Laminates, packaging

References:

- [PMC on FDM basics and applications] [1]
- [Hubs knowledge base on FDM] [2]
- [DesignTechProducts article on FDM] [3]
- [ScienceDirect overview of FDM] [4]

- [Scribd summary of FDM advantages & disadvantages] [5]
- [DigitalCommons & Wikipedia on Ultrasonic Consolidation] [6] [7]
- [3Dnatives and Wevolver on Laminated Object Manufacturing] [8] [9]

Solid state-based AM processes exhibit unique advantages in material compatibility, mechanical properties, and build scale, complementing liquid- and powder-based additive technologies to widen industrial and research applications.

- 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC7257444/
- 2. https://www.hubs.com/knowledge-base/what-is-fdm-3d-printing/
- 3. https://www.designtechproducts.com/articles/working-fdm-3d-printers
- 4. https://www.sciencedirect.com/topics/engineering/fused-deposition-modeling
- 5. https://prototaluk.com/blog/fused-deposition-modelling-advantages-and-disadvantages/
- 6. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1636&context=etd
- 7. https://en.wikipedia.org/wiki/Ultrasonic_consolidation
- 8. https://www.scribd.com/presentation/543996571/LOM
- 9. https://www.3dnatives.com/en/laminated-object-manufacturing-what-is-it-used-for0308234/